Recombinant cell bioassays for endocrine disruptors: development of a stably transfected human ovarian cell line for the detection of estrogenic and anti-estrogenic chemicals

In Vitr Mol Toxicol. Spring 2000;13(1):67-82.

Abstract

The ability of a variety of compounds to disrupt normal endocrine homeostasis, and potentially, the physiological and reproductive capacity of an organism, has gained worldwide attention in recent years. In an attempt to identify such compounds, and to examine the mechanism(s) by which they may exert their actions, we have constructed reporter plasmid vectors that contain the firefly luciferase gene under hormone-inducible control of estrogen-, androgen-, or retinoic acid-responsive DNA enhancer elements. Transient transfection of these vectors into appropriate receptor-containing cell lines revealed their ability to respond to their respective hormones with the induction of luciferase. Here, we describe development and optimization of a recombinant human ovarian carcinoma (BG-1) line, which has been stably transfected with the estrogen responsive luciferase reporter plasmid. The resulting recombinant cell line (BG1Luc4E(2)) responds to 17beta-estradiol at concentrations as low as 1 pM. The utility of BG1Luc4E(2) cells as a bioassay screening system for environmental estrogens was demonstrated by their response to known xenoestrogens, and also by the putative identification of two polychlorinated biphenyls (2,3',4, 4,'-tetrachlorobiphenyl and 2,2',3,5',6-pentachlorobiphenyl) as novel estrogenic chemicals. These cell bioassay systems have applications for rapid screening, identification, and characterization of endocrine disrupting chemicals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Androgens / pharmacology
  • Animals
  • Base Sequence
  • Biological Assay / methods*
  • Dose-Response Relationship, Drug
  • Enhancer Elements, Genetic / genetics
  • Estrogen Antagonists / pharmacology
  • Estrogen Receptor Modulators / analysis*
  • Estrogen Receptor Modulators / pharmacology*
  • Estrogen Receptor Modulators / toxicity
  • Estrogens / analysis*
  • Estrogens / pharmacology*
  • Estrogens / toxicity
  • Female
  • Genes, Reporter / genetics
  • Humans
  • Molecular Sequence Data
  • Ovary / drug effects*
  • Ovary / metabolism
  • Polychlorinated Biphenyls / analysis
  • Polychlorinated Biphenyls / pharmacology
  • Polychlorinated Biphenyls / toxicity
  • Receptors, Estrogen / metabolism
  • Sensitivity and Specificity
  • Substrate Specificity
  • Tamoxifen / pharmacology
  • Time Factors
  • Transcriptional Activation / drug effects
  • Tretinoin / pharmacology
  • Tumor Cells, Cultured

Substances

  • Androgens
  • Estrogen Antagonists
  • Estrogen Receptor Modulators
  • Estrogens
  • Receptors, Estrogen
  • Tamoxifen
  • Tretinoin
  • Polychlorinated Biphenyls