Formation of mature spermatozoa involves a series of dramatic molecular and morphological changes in the male germ cell lineage. These changes result from the temporally regulated transcription and translation of several testis-specific gene products. Here, we describe a novel, testis-specific protein designated SPAN-X for sperm protein associated with the nucleus on the X chromosome. SPAN-X sequences showed no significant similarity with known cDNA or peptide sequences. The SPAN-X peptide sequences contained three overlapping consensus nuclear localization signals, a high percentage (33%-37%) of charged amino acid residues, and a relatively acidic isoelectric point (pI; 4.88-6.05). Northern analysis of mRNA from multiple human tissues identified a SPAN-X transcript exclusively in the testis. In situ hybridization of human testes sections showed SPAN-X mRNA expression in haploid, round, and elongating spermatids. The SPANX gene was mapped to chromosome Xq27. 1 by fluorescence in situ hybridization and by Southern blot analysis of human/mouse somatic cell hybrids. On Western blots of human sperm proteins, antirecombinant SPAN-X antibodies reacted with broad bands migrating between 15-20 kDa. Immunofluorescent labeling of human spermatozoa demonstrated SPAN-X localization to nuclear craters and cytoplasmic droplets. Expression of SPAN-X, an X-linked gene product, exclusively in haploid spermatids leads to interesting questions regarding the transcription of sex-linked genes during spermiogenesis.