The use of laboratory tests in the diagnosis of SLE

J Clin Pathol. 2000 Jun;53(6):424-32. doi: 10.1136/jcp.53.6.424.

Abstract

ANA IIF is an effective screening assay in patients with clinical features of SLE and will detect most anti-ssDNA, anti-dsDNA, ENAs, and other autoantibodies. False positives are common. The clinical importance cannot be extrapolated from the ANA titre or pattern, although higher titres (> 1/160) are more likely to be important. HEp-2 cells are the most sensitive substrate for ANA detection, but this must be balanced against an increased incidence of insignificant positivity. ANA positive samples should be subjected to more specific assays for the diagnosis of SLE. A combination of ENA (Ro/La/Sm/RNP) and dsDNA assays will detect most patients with SLE as long as the characteristics of the assays used are well understood. ESR and CRP measurements provide useful additional information. Sjogren's syndrome and MCTD will produce overlapping serology with SLE, and anti-dsDNA titres are sometimes seen in autoimmune hepatitis and rheumatoid arthritis. All results should be reported in the light of the clinical details, by an experienced immunologist. A suggested diagnostic protocol is outlined in fig 1. The type of assay used crucially influences the predictive value of the tests. ELISA technology dominates routine laboratory practice, but tends to produce more false positive and true weak positive results, which may reduce the PPV of the test. This can be minimised by using IgG specific conjugates and careful assay validation. The NPV for SLE [figure: see text] is high for most assays but the PPV varies. Where necessary, laboratories should use crithidia or Farr dsDNA assays to confirm dubious ELISA dsDNA results, and ID/IB to confirm dubious ENA results. For monitoring, a precise, quantitative assay is required. It is unclear whether the detection of IgM or low affinity antibodies has a role here. A combination of anti-dsDNA, C3, C4, CRP, and ESR assays provides the most useful clinical information. Anti-ssDNA assays are likely to be useful, and are potentially more robust than anti-dsDNA assays, but require more validation. Local validation of individual assays and EQA participation is essential. Not all assays that apparently measure the same antibody specificities have equal clinical relevance, even within a single technology. Insufficient international or national reference preparations are currently available for many antibody specificities to enable effective standardisation. Quality assurance schemes reveal large differences in units reported by different assays for some analytes, even when calibrated against an IRP or equivalent reference preparation. Serial results can therefore only be compared from the same laboratory at present. Most autoantibodies increase during active disease, but few prospective data are currently available to justify treatment on the basis of rising titres. Further randomised prospective studies are required to examine the importance of antibody isotype and affinity in the monitoring of SLE by individual assay methods. The most important aspect of the appropriate use of laboratory assays is to become familiar with the limitations of the technology currently in use in your local laboratory, and to consult with your clinical immunologist in cases of doubt, preferably before commencing serological screening.

Publication types

  • Review

MeSH terms

  • Antibodies, Anticardiolipin / analysis
  • Antibodies, Antineutrophil Cytoplasmic / analysis
  • Antibodies, Antinuclear / analysis
  • Enzyme-Linked Immunosorbent Assay / standards
  • Evidence-Based Medicine
  • Fluorescent Antibody Technique / standards
  • Humans
  • Lupus Erythematosus, Systemic / diagnosis*
  • Lupus Erythematosus, Systemic / immunology
  • Radioimmunoprecipitation Assay / standards
  • Sensitivity and Specificity
  • gamma-Globulins / analysis

Substances

  • Antibodies, Anticardiolipin
  • Antibodies, Antineutrophil Cytoplasmic
  • Antibodies, Antinuclear
  • gamma-Globulins