Order-disorder phenomena determined by high-resolution powder diffraction: the structures of tetrakis(trimethylsilyl)methane C

Acta Crystallogr B. 1999 Dec 1;55(Pt 6):1014-1029. doi: 10.1107/s0108768199006126.

Abstract

The compounds tetrakis(trimethylsilyl)methane C[Si(CH(3))(3)](4) (TC) and tetrakis(trimethylsilyl)silane Si[Si(CH(3))(3)](4) (TSi) have crystal structures with the molecules in a cubic closed-packed (c.c.p.) stacking. At room temperature both structures have space group Fm{\bar 3}m (Z = 4) with a = 13.5218 (1) Å, V = 2472.3 (1) Å(3) for TSi, and a = 12.8902 (2) Å, V = 2141.8 (1) Å(3) for TC. X-ray scattering data can be described by a molecule with approximately sixfold orientational disorder, ruling out a structure with free rotating molecules. Upon cooling, TSi exhibits a first-order phase transition at T(c) = 225 K, as is characterized by a jump of the lattice parameter of Deltaa = 0.182 Å and by an exothermal maximum in differential scanning calorimetry (DSC) with DeltaH = 11.7 kJ mol(-1) and DeltaS = 50.0 J mol(-1) K(-1). The structure of the low-temperature phase is refined against X-ray powder data measured at 200 K. It has space group P2(1)3 (Z = 4), a = 13.17158 (6) Å and V = 2285.15 (2) Å(3). The molecules are found to be ordered as a result of steric interactions between neighboring molecules, as is shown by analyzing distances between atoms and by calculations of the lattice energy in dependence on the orientations of the molecules. TC has a phase transition at T(c1) = 268 K, with Deltaa(1) = 0.065 Å, DeltaH(1) = 3.63 kJ mol(-1) and DeltaS(1) = 13.0 J mol(-1) K(-1). A second first-order phase transition occurs at T(c2) = 225 K, characterized by Deltaa(2) = 0.073 Å, DeltaH(2) = 6.9 kJ mol(-1) and DeltaS(2) = 30.0 J mol(-1) K(-1). The phase transition at higher temperature has not been reported previously. New NMR experiments show a small anomaly in the temperature dependence of the peak positions in NMR to occur at T(c2). Rietveld refinements were performed for the low-temperature phase measured at T = 150 K [space group P2(1)3, lattice parameter a = 12.609 (3) Å], and for the intermediate phase measured at T = 260 K [space group Pa{\bar 3}, lattice parameter a = 12.7876 (1) Å]. The low-temperature phase of TC is formed isostructural to the low-temperature phase of TSi. In the intermediate phase the molecules exhibit a twofold orientational disorder.