Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome

Am J Hum Genet. 2000 Sep;67(3):623-30. doi: 10.1086/303055. Epub 2000 Aug 7.


Down syndrome is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677C-->T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. The present study was undertaken with a larger sample size to determine whether the MTHFR 677C-->T polymorphism was associated with increased risk of having a child with Down syndrome. Methionine synthase reductase (MTRR) is another enzyme essential for normal folate metabolism. A common polymorphism in this gene was recently associated with increased risk of neural tube defects and might also contribute to increased risk for Down syndrome. The frequencies of the MTHFR 677C-->T and MTRR 66A-->G mutations were evaluated in DNA samples from 157 mothers of children with Down syndrome and 144 control mothers. Odds ratios were calculated for each genotype separately and for potential gene-gene interactions. The results are consistent with the preliminary observation that the MTHFR 677C-->T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 1.91 (95% confidence interval [CI] 1.19-3.05). In addition, the homozygous MTRR 66A-->G polymorphism was independently associated with a 2. 57-fold increase in estimated risk (95% CI 1.33-4.99). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than was the presence of either alone, with an odds ratio of 4.08 (95% CI 1.94-8.56). The two polymorphisms appear to act without a multiplicative interaction.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Alleles
  • Case-Control Studies
  • DNA Mutational Analysis
  • Down Syndrome / genetics*
  • Female
  • Ferredoxin-NADP Reductase / genetics*
  • Ferredoxin-NADP Reductase / metabolism
  • Folic Acid / metabolism*
  • Gene Frequency / genetics
  • Genetic Predisposition to Disease / genetics*
  • Genotype
  • Humans
  • Methylenetetrahydrofolate Reductase (NADPH2)
  • Odds Ratio
  • Oxidoreductases Acting on CH-NH Group Donors / genetics*
  • Oxidoreductases Acting on CH-NH Group Donors / metabolism
  • Polymorphism, Genetic / genetics*
  • Pregnancy


  • Folic Acid
  • methionine synthase reductase
  • Ferredoxin-NADP Reductase
  • Oxidoreductases Acting on CH-NH Group Donors
  • Methylenetetrahydrofolate Reductase (NADPH2)