Improved phase-contrast flow quantification by three-dimensional vessel localization

Magn Reson Imaging. 2000 Jul;18(6):697-706. doi: 10.1016/s0730-725x(00)00157-0.


In this paper, a method of three-dimensional (3D) vessel localization is presented to allow the identification of a vessel of interest, the selection of a vessel segment, and the determination of a slice orientation to improve the accuracy of phase-contrast magnetic resonance (PCMR) angiography. A marching-cube surface-rendering algorithm was used to reconstruct the 3D vasculature. Surface-rendering was obtained using an iso-surface value determined from a maximum intensity projection (MIP) image. This 3D vasculature was used to find a vessel of interest, select a vessel segment, and to determine the slice orientation perpendicular to the vessel axis. Volumetric flow rate (VFR) was obtained in a phantom model and in vivo using 3D localization with double oblique cine PCMR scanning. PCMR flow measurements in the phantom showed 5. 2% maximum error and a standard deviation of 9 mL/min during steady flow, 7.9% maximum error and a standard deviation of 13 mL/min during pulsatile flow compared with measurements using an ultrasonic transit-time flowmeter. PCMR VFR measurement error increased with misalignment at 10, 20, and 30 degrees oblique to the perpendicular slice in vitro and in vivo. The 3D localization technique allowed precise localization of the vessel of interest and optimal placement of the slice orientation for minimum error in flow measurements.

MeSH terms

  • Blood Flow Velocity
  • Brain / anatomy & histology*
  • Brain / blood supply
  • Carotid Arteries / anatomy & histology*
  • Carotid Arteries / physiology
  • Cerebral Arteries / anatomy & histology
  • Cerebral Arteries / physiology
  • Humans
  • Magnetic Resonance Angiography / methods*
  • Magnetic Resonance Imaging, Cine / methods
  • Regional Blood Flow