It is well known that you cannot tickle yourself. Here, we discuss the proposal that such attenuation of self-produced tactile stimulation is due to the sensory predictions made by an internal forward model of the motor system. A forward model predicts the sensory consequences of a movement based on the motor command. When a movement is self-produced, its sensory consequences can be accurately predicted, and this prediction can be used to attenuate the sensory effects of the movement. Studies are reviewed that demonstrate that as the discrepancy between predicted and actual sensory feedback increases during self-produced tactile stimulation there is a concomitant decrease in the level of sensory attenuation and an increase in tickliness. Functional neuroimaging studies have demonstrated that this sensory attenuation might be mediated by somatosensory cortex and anterior cingulate cortex: these areas are activated less by a self-produced tactile stimulus than by the same stimulus when it is externally produced. Furthermore, evidence suggests that the cerebellum might be involved in generating the prediction of the sensory consequences of movement. Finally, recent evidence suggests that this predictive mechanism is abnormal in patients with auditory hallucinations and/or passivity experiences.