Human brain gamma-aminobutyrate transaminase is differentially expressed in a tissue-specific manner. mRNA master dot-blot analysis for 50 different human tissues, including different brain regions and fetal tissues, provided a complete map of the tissue distribution. Genomic Southern analysis revealed that the gamma-aminobutyrate transaminase gene is a single copy, at least 15 kb in size. In addition, human brain gamma-aminobutyrate transaminase cDNA was expressed in Escherichia coli using a pGEX expression vector system. Catalytically active gamma-aminobutyrate transaminase was expressed in large quantities and the purified recombinant enzyme had kinetic parameters that were indistinguishable from those isolated from other mammalian brains. The human enzyme was inactivated by a well-known antiepileptic drug vigabatrin. Values of Ki and kinact were 1 mM and 0.35 min-1, respectively. Results from inactivation kinetics suggested that human gamma-aminobutyrate transaminase is more sensitive to the vigabatrin drug than the enzyme isolated from bovine brain.