Adaptation of the 24-h growth hormone profile to a state of sleep debt

Am J Physiol Regul Integr Comp Physiol. 2000 Sep;279(3):R874-83. doi: 10.1152/ajpregu.2000.279.3.R874.

Abstract

In normal men, the majority of GH secretion occurs in a single large postsleep onset pulse that is suppressed during total sleep deprivation. We examined the impact of semichronic partial sleep loss, a highly prevalent condition, on the 24-h growth hormone profile. Eleven young men were studied after six nights of restricted bedtimes (0100-0500) and after 7 nights of extended bedtimes (2100-0900). Slow-wave sleep (SWS) was estimated as the duration of stages III and IV. Slow-wave activity (SWA) was calculated as electroencephalogram power density in the 0.5- to 3-Hz frequency range. During the state of sleep debt, the GH secretory pattern was biphasic, with both a presleep onset "circadian" pulse and a postsleep onset pulse. Postsleep onset GH secretion was negatively related to presleep onset secretion and tended to be positively correlated with the amount of concomitant SWA. When sleep was restricted, both SWS and SWA were increased during early sleep. Unexpectedly, the increase in SWA affected the second, rather than the first, SWA cycle, suggesting that presleep onset GH secretion may have limited SWA in the first cycle, possibly via an inhibition of central GH-releasing hormone activity. Thus neither the GH profile nor the distribution of SWA conformed with predictions from acute sleep deprivation studies, indicating that adaptation mechanisms are operative during chronic partial sleep loss.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological / physiology*
  • Adult
  • Circadian Rhythm / physiology*
  • Electroencephalography
  • Human Growth Hormone / blood*
  • Human Growth Hormone / metabolism
  • Humans
  • Linear Models
  • Male
  • Sleep / physiology*
  • Sleep Deprivation / physiopathology*
  • Sleep Disorders, Circadian Rhythm / physiopathology

Substances

  • Human Growth Hormone