Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation

J Neurosci Methods. 2000 Aug 15;101(1):49-57. doi: 10.1016/s0165-0270(00)00252-1.

Abstract

Functional magnetic resonance imaging (fMRI) has been increasingly used in studying human brain function given its non-invasive feature and good spatial resolution. However, difficulties in acquiring data from peripheral (e.g. information from muscle) during fMRI studies of motor function hinder interpretation of fMRI data and designing more sophisticated investigations. Here we describe a system that was designed to concurrently measure handgrip force, surface electromyograms (EMG) of finger flexor and extensor muscles, and fMRI of human brain. The system included a pressure transducer built in a hydraulic environment, a heavily shielded EMG recording element, and a visual feedback structure for online monitoring of force and/or EMG signal, by the subject positioned in the scanner during an fMRI experiment. System evaluation and subsequent fMRI motor function studies have indicated that by using this system, high quality force and EMG signals can be recorded without sacrificing the quality of the fMRI data.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Brain Mapping / methods*
  • Calibration
  • Electromyography*
  • Equipment Design
  • Hand / physiology
  • Hand Strength / physiology*
  • Humans
  • Magnetic Resonance Imaging*
  • Motor Activity
  • Muscle Contraction / physiology*
  • Online Systems
  • Psychomotor Performance / physiology*
  • Transducers, Pressure