Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer's disease

Dement Geriatr Cogn Disord. 2000 Sep;11 Suppl 1:11-8. doi: 10.1159/000051227.


Impairment of the central cholinergic system has a pivotal role in the cognitive decline observed in patients with Alzheimer's disease (AD). One of the most prominent cholinergic deficits is the reduced number of nicotinic acetylcholine receptors (nAChR) in the brain. Since these receptors are important for memory and learning, enhancing nicotinic neurotransmission is a promising treatment strategy for AD. The two most common approaches to correcting these cholinergic deficits are to increase the synaptic availability of acetylcholine (ACh) by inhibiting acetylcholinesterase (AChE), or to mimic the effects of ACh (nicotinic agonists) by acting directly on nicotinic receptors. Clinical studies suggest that AChE inhibitors produce only short-term symptomatic improvement. Similarly, long-term use of nicotinic agonists may induce desensitization of nicotinic receptors, leading to tolerance and therefore limiting the duration of efficacy. Allosteric modulation of nAChR is a novel approach, which circumvents the development of tolerance. Allosteric modulators bind to a site on nAChR that is different to the binding site of the natural agonist, ACh. This allosteric interaction amplifies the actions of ACh at post- and presynaptic nAChR. In particular, presynaptic nAChR are capable of modulating the release of ACh and other neurotransmitters, such as glutamate, serotonin and GABA, which may contribute to symptoms of the illness. Allosteric modulation of nAChR could therefore produce significant therapeutic benefit in AD. One of the most potent of these allosteric modulators is galantamine. As well as modulating nAChR, galantamine inhib- its AChE. The extent to which the clinical benefits of galantamine are attributable specifically to its nicotinic effects is uncertain and requires further investigation. However, galantamine maintains patients' level of cognitive and daily function for at least 1 year, which has not been reported for other AChE inhibitors. Galantamine's modulatory effects on nAChR may influence transcriptional regulation, resulting in an increased synthesis of nAChR. This may account for galantamine's sustained efficacy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / drug therapy*
  • Alzheimer Disease / metabolism
  • Cholinergic Agents / therapeutic use*
  • Galantamine / therapeutic use*
  • Humans
  • Receptors, Nicotinic / drug effects*
  • Synaptic Transmission / drug effects


  • Cholinergic Agents
  • Receptors, Nicotinic
  • Galantamine