Changes in free and esterified cholesterol: hallmarks of acute renal tubular injury and acquired cytoresistance

Am J Pathol. 2000 Sep;157(3):1007-16. doi: 10.1016/S0002-9440(10)64613-5.

Abstract

Acute tubular cell injury is accompanied by plasma membrane phospholipid breakdown. Although cholesterol is a dominant membrane lipid which interdigitates with, and impacts, phospholipid homeostasis, its fate during the induction and recovery phases of acute renal failure (ARF) has remained ill defined. The present study was performed to ascertain whether altered cholesterol expression is a hallmark of evolving tubular damage. Using gas chromatographic analysis, free cholesterol (FC) and esterified cholesterol (CE) were quantified in: 1) isolated mouse proximal tubule segments (PTS) after 30 minutes of hypoxic or oxidant (ferrous ammonium sulfate) injury; 2) cultured proximal tubule (HK-2) cells after 4 or 18 hours of either ATP depletion/Ca(2+) ionophore- or ferrous ammonium sulfate-mediated injury; and 3) in renal cortex 18 hours after induction of glycerol-induced myoglobinuric ARF, a time corresponding to the so-called "acquired cytoresistance" state (ie, resistance to further renal damage). Hypoxic and oxidant injury each induced approximately 33% decrements in CE (but not FC) levels in PTS, corresponding with lethal cell injury ( approximately 50 to 60% LDH release). When comparable CE declines were induced in normal PTS by exogenous cholesterol esterase treatment, proportionate lethal cell injury resulted. During models of slowly evolving HK-2 cell injury, progressive CE increments occurred: these were first noted at 4 hours, and reached approximately 600% by 18 hours. In vivo myoglobinuric ARF produced comparable renal cortical CE (and to a lesser extent FC) increments. Renal CE accumulation strikingly correlated with the severity of ARF (eg, blood urea nitrogen versus CE; r, 0.84). Mevastatin blocked cholesterol accumulation in injured HK-2 cells, indicating de novo synthesis was responsible. Acute tubule injury first lowers, then raises, tubule cholesterol content. Based on previous observations that cholesterol has cytoprotectant properties, the present findings have potential relevance for both the induction and maintenance phases of ARF.

MeSH terms

  • Acute Kidney Injury / chemically induced
  • Acute Kidney Injury / metabolism*
  • Acute Kidney Injury / pathology
  • Animals
  • Cell Hypoxia
  • Cell Survival / drug effects
  • Cholesterol / metabolism*
  • Cholesterol Esters / metabolism*
  • Cholesterol Oxidase / pharmacology
  • Chromatography, Gas
  • Cytoprotection*
  • Ferrous Compounds / toxicity
  • Glycerol / toxicity
  • Kidney Tubules, Proximal / drug effects
  • Kidney Tubules, Proximal / metabolism*
  • Kidney Tubules, Proximal / pathology
  • L-Lactate Dehydrogenase / metabolism
  • Lovastatin / analogs & derivatives*
  • Lovastatin / pharmacology
  • Male
  • Mice
  • Myoglobinuria / chemically induced
  • Oxidative Stress
  • Quaternary Ammonium Compounds / toxicity
  • Sterol Esterase / pharmacology

Substances

  • Cholesterol Esters
  • Ferrous Compounds
  • Quaternary Ammonium Compounds
  • mevastatin
  • Cholesterol
  • Lovastatin
  • ammonium ferrous sulfate
  • L-Lactate Dehydrogenase
  • Cholesterol Oxidase
  • Sterol Esterase
  • Glycerol