Modulation of L-type Ca2+ channels by gbeta gamma and calmodulin via interactions with N and C termini of alpha 1C

J Biol Chem. 2000 Dec 22;275(51):39846-54. doi: 10.1074/jbc.M005881200.

Abstract

Neuronal voltage-dependent Ca(2+) channels of the N (alpha(1B)) and P/Q (alpha(1A)) type are inhibited by neurotransmitters that activate G(i/o) G proteins; a major part of the inhibition is voltage-dependent, relieved by depolarization, and results from a direct binding of Gbetagamma subunit of G proteins to the channel. Since cardiac and neuronal L-type (alpha(1C)) voltage-dependent Ca(2+) channels are not modulated in this way, they are presumed to lack interaction with Gbetagamma. However, here we demonstrate that both Gbetagamma and calmodulin directly bind to cytosolic N and C termini of the alpha(1C) subunit. Coexpression of Gbetagamma reduces the current via the L-type channels. The inhibition depends on the presence of calmodulin, occurs at basal cellular levels of Ca(2+), and is eliminated by EGTA. The N and C termini of alpha(1C) appear to serve as partially independent but interacting inhibitory gates. Deletion of the N terminus or of the distal half of the C terminus eliminates the inhibitory effect of Gbetagamma. Deletion of the N terminus profoundly impairs the Ca(2+)/calmodulin-dependent inactivation. We propose that Gbetagamma and calmodulin regulate the L-type Ca(2+) channel in a concerted manner via a molecular inhibitory scaffold formed by N and C termini of alpha(1C).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium Channels, L-Type / physiology*
  • Calmodulin / physiology*
  • GTP-Binding Proteins / physiology*
  • Humans
  • Ion Channel Gating

Substances

  • Calcium Channels, L-Type
  • Calmodulin
  • GTP-Binding Proteins