Magnesium ions inhibit the antigen-presenting function of human epidermal Langerhans cells in vivo and in vitro. Involvement of ATPase, HLA-DR, B7 molecules, and cytokines

J Invest Dermatol. 2000 Oct;115(4):680-6. doi: 10.1046/j.1523-1747.2000.00090.x.


The combination of seawater baths and solar radiation at the Dead Sea is known as an effective treatment for patients with psoriasis and atopic dermatitis. Dead Sea water is particularly rich in magnesium ions. In this study we wished to determine the effects of magnesium ions on the capacity of human epidermal Langerhans cells to stimulate the proliferation of alloreactive T cells. Twelve subjects were exposed on four subsequent days on the volar aspects of their forearms to 5% MgCl2, 5% NaCl, ultraviolet B (1 minimal erythemal dose), MgCl2 + ultraviolet B, and NaCl + ultraviolet B. Epidermal sheets were prepared from punch biopsies and were stained for ATPase and HLA-DR. Compared with untreated skin, the number of ATPase+/HLA-DR+ Langerhans cells was significantly reduced after treatment with MgCl2 (p = 0.0063) or ultraviolet B (p = 0.0005), but not after NaCl (p = 0.7744). We next questioned whether this reduced expression of ATPase and HLA-DR on Langerhans cells bears a functional relevance. Six subjects were treated on four subsequent days with 5% MgCl2, ultraviolet B (1 minimal erythemal dose), and MgCl2 + ultraviolet B. Epidermal cell suspensions from treated and untreated skin were assessed for their antigen-presenting capacity in a mixed epidermal lymphocyte reaction with allogeneic naive resting T cells as responder cells. Treatment with MgCl2, similarly to ultraviolet B, significantly reduced the capacity of epidermal cells to activate allogeneic T cells (p = 0.0356). Magnesium ions also suppressed Langerhans cells function when added to epidermal cell suspensions in vitro. The reduced antigen-presenting capacity of Langerhans cells after treatment with MgCl2 was associated with a reduced expression by Langerhans cells of HLA-DR and costimulatory B7 molecules, and with a suppression of the constitutive tumor necrosis factor-alpha production by epidermal cells in vitro. These findings demonstrate that magnesium ions specifically inhibit the antigen-presenting capacity of Langerhans cells and may thus contribute to the efficacy of Dead Sea water in the treatment of inflammatory skin diseases.

MeSH terms

  • Adenosine Triphosphatases / biosynthesis
  • Antigen Presentation / drug effects
  • Antigen Presentation / physiology*
  • B7-1 Antigen / biosynthesis
  • Cytokines / biosynthesis
  • HLA-DR Antigens / biosynthesis
  • Humans
  • Langerhans Cells / drug effects
  • Langerhans Cells / immunology*
  • Langerhans Cells / metabolism
  • Magnesium / pharmacology*
  • Skin / cytology


  • B7-1 Antigen
  • Cytokines
  • HLA-DR Antigens
  • Adenosine Triphosphatases
  • Magnesium