We have provided an overview of recent studies that have greatly expanded our knowledge of the molecular and cellular mechanisms that determine the sensitivity or resistance to ionizing radiation. Much of this knowledge was obtained by studying tumor and nontumor cell types that under- or overexpress proteins involved in the regulation of the DNA damage response, cell cycle progression, growth factor signal transduction, and apoptosis. These findings may ultimately be useful in devising new strategies to improve the therapeutic ratio in cancer treatment. Despite the rapid advances in knowledge of cellular functions that affect radiosensitivity, we still cannot account for most of the clinically observed heterogeneity of normal tissue and tumor responses to radiotherapy; nor can we accurately predict which individual tumors will be locally controlled and which patients will develop more severe normal tissue damage after radiotherapy. However, several candidate genes for which deletion or loss of function mutations may be associated with altered cellular radiosensitivity (e.g., ATM, p53, BRCA2) have been identified. Some of the differences in normal tissue sensitivity to radiation may occur because of mutations with milder effects, heterozygosity, or polymorphisms of these genes. Finally, molecular mechanisms linking genetic instability, radiosensitivity, and predisposition to cancer are being examined.