Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly

Micron. 2001 Apr;32(3):223-37. doi: 10.1016/s0968-4328(00)00043-3.


Type V collagen is a quantitatively minor fibrillar collagen with a broad tissue distribution. The most common type V collagen isoform is alpha1(V)(2) alpha2(V) found in cornea. However, other isoforms exist, including an [alpha1(V)alpha2(V)alpha3(V)] form, an alpha1(V)(3) homotrimer and hybrid type V/XI forms. The functional role and fibrillar organization of these isoforms is not understood. In the cornea, type V collagen has a key role in the regulation of initial fibril assembly. Type I and type V collagen co-assemble into heterotypic fibrils. The entire triple-helical domain of the type V collagen molecules is buried within the fibril and type I collagen molecules are present along the fibril surface. The retained NH(2)-terminal domains of the type V collagen are exposed at the surface, extending outward through the gap zones. The molecular model of the NH(2)-terminal domain indicates that the short alpha helical region is a flexible hinge-like region allowing the peptide to project away from the major axis of the molecule; the short triple-helical regions serve as an extension through the hole zone, placing the tyrosine-rich domain at the surface. The assembly of early, immature fibril intermediates (segments) is regulated by the NH(2)-terminal domain of type V collagen. These NH(2)-terminal domains alter accretion of collagen molecules onto fibrils and therefore lateral growth. A critical density would favor the initiation of new fibrils rather than the continued growth of existing fibrils. Other type V collagen isoforms are likely to have an important role in non-cornea tissues. This role may be mediated by supramolecular aggregates different from those in the corneal stroma or by an alteration of the interactions mediated by tissue-specific type V collagen domains generated by different isoforms or aggregate structures. Presumably, the aggregate structure or specific domains are involved in the regionalization of fibril-associated macromolecules necessary for the tissue-specific regulation of later fibril growth and matrix assembly stages.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Collagen / chemistry
  • Collagen / metabolism*
  • Collagen / ultrastructure
  • Cornea / chemistry
  • Cornea / growth & development
  • Cornea / ultrastructure
  • Gene Expression Regulation
  • Humans
  • Microscopy, Electron
  • Protein Structure, Tertiary


  • Collagen