Resolution and noise properties of MAP reconstruction for fully 3-D PET

IEEE Trans Med Imaging. 2000 May;19(5):493-506. doi: 10.1109/42.870259.


We derive approximate analytical expressions for the local impulse response and covariance of images reconstructed from fully three-dimensional (3-D) positron emission tomography (PET) data using maximum a posteriori (MAP) estimation. These expressions explicitly account for the spatially variant detector response and sensitivity of a 3-D tomograph. The resulting spatially variant impulse response and covariance are computed using 3-D Fourier transforms. A truncated Gaussian distribution is used to account for the effect on the variance of the nonnegativity constraint used in MAP reconstruction. Using Monte Carlo simulations and phantom data from the microPET small animal scanner, we show that the approximations provide reasonably accurate estimates of contrast recovery and covariance of MAP reconstruction for priors with quadratic energy functions. We also describe how these analytical results can be used to achieve near-uniform contrast recovery throughout the reconstructed volume.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Analysis of Variance
  • Animals
  • Brain / diagnostic imaging
  • Haplorhini
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Models, Theoretical
  • Monte Carlo Method
  • Normal Distribution
  • Phantoms, Imaging
  • Poisson Distribution
  • Tomography, Emission-Computed / methods*