Structure and function of the dopamine transporter

Eur J Pharmacol. 2000 Sep 29;405(1-3):329-39. doi: 10.1016/s0014-2999(00)00563-x.


The dopamine transporter mediates uptake of dopamine into neurons and is a major target for various pharmacologically active drugs and environmental toxins. Since its cloning, much information has been obtained regarding its structure and function. Binding domains for dopamine and various blocking drugs including cocaine are likely formed by interactions with multiple amino acid residues, some of which are separate in the primary structure but lie close together in the still unknown tertiary structure. Chimera and site-directed mutagenesis studies suggest the involvement of both overlapping and separate domains in the interaction with substrates and blockers, whereas recent findings with sulfhydryl reagents selectively targeting cysteine residues support a role for conformational changes in the binding of blockers such as cocaine. The dopamine transporter can also operate in reverse, i.e. in an efflux mode, and recent mutagenesis experiments show different structural requirements for inward and outward transport. Strong evidence for dopamine transporter domains selectively influencing binding of dopamine or cocaine analogs has not yet emerged, although the development of a cocaine antagonist at the level of the transporter remains a possibility.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Carrier Proteins / chemistry
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Cocaine / metabolism
  • Dopamine Plasma Membrane Transport Proteins
  • Dopamine Uptake Inhibitors / metabolism
  • Humans
  • Kinetics
  • Membrane Glycoproteins*
  • Membrane Transport Proteins*
  • Nerve Tissue Proteins*
  • Receptors, Dopamine / metabolism


  • Carrier Proteins
  • Dopamine Plasma Membrane Transport Proteins
  • Dopamine Uptake Inhibitors
  • Membrane Glycoproteins
  • Membrane Transport Proteins
  • Nerve Tissue Proteins
  • Receptors, Dopamine
  • Cocaine