The cytoplasmic C-terminal fragment of polycystin-1 regulates a Ca2+-permeable cation channel

J Biol Chem. 2001 Feb 9;276(6):4093-101. doi: 10.1074/jbc.M006252200. Epub 2000 Oct 23.


The cytoplasmic C-terminal portion of the polycystin-1 polypeptide (PKD1(1-226)) regulates several important cell signaling pathways, and its deletion suffices to cause autosomal dominant polycystic kidney disease. However, a functional link between PKD1 and the ion transport processes required to drive renal cyst enlargement has remained elusive. We report here that expression at the Xenopus oocyte surface of a transmembrane fusion protein encoding the C-terminal portion of the PKD1 cytoplasmic tail, PKD1(115-226), but not the N-terminal portion, induced a large, Ca(2+)-permeable cation current, which shifted oocyte reversal potential (E(rev)) by +33 mV. Whole cell currents were sensitive to inhibition by La(3+), Gd(3+), and Zn(2+), and partially inhibited by SKF96365 and amiloride. Currents were not activated by bath hypertonicity, but were inhibited by acid pH. Outside-out patches pulled from PKD1(115-226)-expressing oocytes exhibited a 5.1-fold increased NP(o) of endogenous 20-picosiemens cation channels of linear conductance. PKD1(115-226)-injected oocytes also exhibited elevated NP(o) of unitary calcium currents in outside-out and cell-attached patches, and elevated calcium permeability documented by fluorescence ratio and (45)Ca(2+) flux experiments. Both Ca(2+) conductance and influx were inhibited by La(3+). Mutation of candidate phosphorylation sites within PKD1(115-226) abolished the cation current. We conclude that the C-terminal cytoplasmic tail of PKD1 up-regulates inward current that includes a major contribution from Ca(2+)-permeable nonspecific cation channels. Dysregulation of these or similar channels in autosomal dominant polycystic kidney disease may contribute to cyst formation or expansion.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Calcium Channels / metabolism*
  • Calcium Channels / physiology
  • Molecular Sequence Data
  • Patch-Clamp Techniques
  • Peptide Fragments / chemistry
  • Peptide Fragments / pharmacology*
  • Permeability
  • Proteins / chemistry*
  • TRPP Cation Channels
  • Xenopus


  • Calcium Channels
  • Peptide Fragments
  • Proteins
  • TRPP Cation Channels
  • polycystic kidney disease 1 protein