Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier

IEEE Trans Biomed Eng. 2000 Oct;47(10):1406-11. doi: 10.1109/10.871415.


We report a result on neural spike sorting under conditions where the signal-to-noise ratio is very low. The use of nonlinear energy operator enables the detection of an action potential, even when the SNR is so poor that a typical amplitude thresholding method cannot be applied. The superior detection ability facilitates the collection of a training set under lower SNR than that of the methods which employ simple amplitude thresholding. Thus, the statistical characteristics of the input vectors can be better represented in the neural-network classifier. The trained neural-network classifiers yield the correct classification ratio higher than 90% when the SNR is as low as 1.2 (0.8 dB) when applied to data obtained from extracellular recording from Aplysia abdominal ganglia using a semiconductor microelectrode array.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Aplysia / physiology*
  • Nerve Net*
  • Neural Conduction / physiology
  • Signal Processing, Computer-Assisted*