Relatively limited information is available on the processing and function of the normal cellular prion protein, PrP(C). Here it is reported for the first time that PrP(C) undergoes a site-specific cleavage of the octapeptide repeat region of the amino terminus on exposure to reactive oxygen species. This cleavage was both copper- and pH-dependent and was retarded by the presence of other divalent metal ions. The oxidative state of the cell also decreased detection of full-length PrP(C) and increased detection of amino-terminally fragmented PrP(C) within cells. Such a post-translational modification has vast implications for PrP(C), in its processing, because such cleavage could alter further proteolysis, and in the formation of the scrapie isoform of the prion protein, PrP(Sc), because abnormal cleavage of PrP(Sc) occurs into the octapeptide repeat region.