Visual motion integration for perception and pursuit

Perception. 2000;29(7):771-87. doi: 10.1068/p2979.


To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Humans
  • Models, Psychological
  • Motion Perception / physiology*
  • Photic Stimulation / methods
  • Pursuit, Smooth / physiology*
  • Visual Pathways / physiology