Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus)

Physiol Biochem Zool. Sep-Oct 2000;73(5):547-56. doi: 10.1086/317757.


Recently, much interest has been expressed in understanding how animals use phenotypic plasticity of tissue size and function to meet increased metabolic demands. We set out to learn (i) whether female deer mice (Peromyscus maniculatus) given lactation (two to seven pups per litter), cold (5 degrees C), or cold plus lactation as energy demands display phenotypic plasticity in organ size and function; (ii) whether that plasticity is similar to laboratory mice given the same demands; and (iii) whether lactational performance in deer mice is derived from limits on central or peripheral organs. We found that deer mice responded to lactation by increasing digestible food intake and increasing the masses of the stomach, small intestine, cecum and liver, and the length of the small intestine. Heart mass was lower in lactating than in nonlactating mice. Cold exposure also caused increases in digestible food intake and increases in the masses of the small intestine, kidney, and heart. We conclude that deer mice display organ tissue plasticity in response to both lactation and cold exposure in a similar manner to laboratory mice. We also conclude that deer mice are not limited by central processing organs because they are able to increase digestive organ size continuously with increased energetic demands.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Cold Temperature*
  • Eating
  • Energy Metabolism
  • Female
  • Lactation / physiology*
  • Metabolism
  • Peromyscus
  • Phenotype