Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium

J Membr Biol. 2000 Nov 15;178(2):89-101. doi: 10.1007/s002320010017.

Abstract

Epithelial cells from the anterior and equatorial surfaces of the frog lens were isolated and used the same day for studies of the Na/K ATPase. RNase protection assays showed that all cells express alpha(1)- and alpha(2)-isoforms of the Na/K pump but not the alpha(3)-isoform, however the alpha(2)-isoform dominates in anterior cells whereas the alpha(1)-isoform dominates in equatorial cells. The whole cell patch-clamp technique was used to record functional properties of the Na/K pump current (I(P)), defined as the current specifically inhibited by dihydro-ouabain (DHO). DHO-I(P) blockade data indicate the alpha(1)-isoform has a dissociation constant of 100 microm DHO whereas for the alpha(2)-isoform it is 0.75 microm DHO. Both alpha(1)- and alpha(2)-isoforms are half maximally activated at an intracellular Na(+)-concentration of 9 mm. The alpha(1)-isoform is half maximally activated at an extracellular K(+)-concentration of 3.9 mm whereas for the alpha(2)-isoform, half maximal activation occurs at 0.4 mm. Lastly, transport by the alpha(1)-isoform is inhibited by a drop in extracellular pH, which does not affect transport by the alpha(2)-isoform. Under normal physiological conditions, I(P) in equatorial cells is approximately 0.23 microA/microF, and in anterior cells it is about 0.14 microA/microF. These current densities refer to the area of cell membrane assuming a capacitance of around 1 microF/cm(2). Because cell size and geometry are different at the equatorial vs. anterior surface of the intact lens, we estimate Na/K pump current density per area of lens surface to be around 10 microA/cm(2) at the equator vs. 0.5 microA/cm(2) at the anterior pole.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Electric Conductivity
  • Epithelium / drug effects
  • Epithelium / enzymology
  • Hydrogen-Ion Concentration
  • Ion Transport*
  • Lens, Crystalline / cytology
  • Lens, Crystalline / drug effects
  • Lens, Crystalline / enzymology*
  • Models, Biological
  • Molecular Sequence Data
  • Nuclease Protection Assays
  • Ouabain / analogs & derivatives*
  • Ouabain / pharmacology
  • Patch-Clamp Techniques
  • Protein Isoforms / antagonists & inhibitors
  • Protein Isoforms / genetics
  • Protein Isoforms / physiology
  • RNA, Messenger / biosynthesis
  • Rana pipiens
  • Sequence Alignment
  • Sodium-Potassium-Exchanging ATPase / antagonists & inhibitors
  • Sodium-Potassium-Exchanging ATPase / genetics
  • Sodium-Potassium-Exchanging ATPase / physiology*

Substances

  • Protein Isoforms
  • RNA, Messenger
  • dihydroouabain
  • Ouabain
  • Sodium-Potassium-Exchanging ATPase