Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean

Nature. 2000 Nov 16;408(6810):349-52. doi: 10.1038/35042558.

Abstract

One possible consequence of a change in climate over the past several decades is an increase in wave heights, potentially threatening coastal areas as well as the marine industry. But the difficulties in observing wave heights exacerbates a general problem of climate-change detection: inhomogeneities in long-term observational records owing to changes in the instruments or techniques used, which may cause artificial trends. Ground movements with periods of 4-16 seconds, known as microseisms, are associated with ocean waves and coastal surf, and have been recorded continuously since the early days of seismology. Here we use such a 40-year record of wintertime microseisms from Hamburg, Germany, to reconstruct the wave climate in the northeast Atlantic Ocean. For the period 1954-77, we detect an average of seven days per month with strong microseismic activity, without a significant trend. This number increases significantly in the second half of the record, reaching approximately 14 days of strong microseisms per month. The implied increase in northeast Atlantic wave height over the past 20 years parallels increased surface air temperatures and storminess in this region, suggesting a common forcing.