Depression of protein synthesis during diapause in embryos of the annual killifish Austrofundulus limnaeus

Physiol Biochem Zool. Nov-Dec 2000;73(6):799-808. doi: 10.1086/318106.

Abstract

Rates of protein synthesis are substantially depressed in diapause II embryos of Austrofundulus limnaeus. Inhibition of oxygen consumption and heat dissipation with cycloheximide indicates that 36% of the adenosine triphosphate (ATP) turnover in prediapausing embryos (8 d postfertilization [dpf]) is caused by protein synthesis; the contribution of protein synthesis to ATP turnover in diapause II embryos is negligible. In agreement with the metabolic data, incorporation of amino acids (radiolabeled via (14)CO(2)) into perchloric acid-precipitable protein decreases by over 93% in diapause II embryos compared with embryos at 8 dpf. This result represents a 36% reduction in energy demand because of depression of protein synthesis during diapause. Adjusting for changes in the specific radioactivity of the free amino acid pool at the whole-embryo level yields rates of protein synthesis that are artifactually high and not supportable by the observed rates of oxygen consumption and heat dissipation during diapause. This result indicates a regionalized distribution of labeled amino acids likely dictated by a pattern of anterior to posterior cell cycle arrest. AMP/ATP ratios are strongly correlated with the decrease in rates of protein synthesis, which suggests a role for adenosine monophosphate (AMP) in the control of anabolic processes. The major depression of protein synthesis during diapause II affords a considerable reduction in energy demand and extends the duration of dormancy attainable in these embryos.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acids / metabolism
  • Animals
  • Cycloheximide / pharmacology
  • Energy Metabolism / drug effects
  • Hot Temperature
  • Killifishes / embryology*
  • Oxygen Consumption / drug effects
  • Protein Biosynthesis*
  • Protein Synthesis Inhibitors / pharmacology

Substances

  • Amino Acids
  • Protein Synthesis Inhibitors
  • Cycloheximide