Pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine derivatives as highly potent and selective human A(3) adenosine receptor antagonists: influence of the chain at the N(8) pyrazole nitrogen

J Med Chem. 2000 Dec 14;43(25):4768-80. doi: 10.1021/jm001047y.


An enlarged series of pyrazolotriazolopyrimidines previously reported, in preliminary form (Baraldi et al. J. Med. Chem. 1999, 42, 4473-4478), as highly potent and selective human A(3) adenosine receptor antagonists is described. The synthesized compounds showed A(3) adenosine receptor affinity in the sub-nanomolar range and high levels of selectivity evaluated in radioligand binding assays at human A(1), A(2A), A(2B), and A(3) adenosine receptors. In particular, the effect of the chain at the N(8) pyrazole nitrogen was analyzed. This study allowed us to identify the derivative with the methyl group at the N(8) pyrazole combined with the 4-methoxyphenylcarbamoyl moiety at the N(5) position as the compound with the best binding profile in terms of both affinity and selectivity (hA(3) = 0.2 nM, hA(1)/hA(3) = 5485, hA(2A)/hA(3) = 6950, hA(2B)/hA(3) = 1305). All the compounds proved to be full antagonists in a specific functional model where the inhibition of cAMP generation by IB-MECA was measured in membranes of CHO cells stably transfected with the human A(3) receptor. The new compounds are among the most potent and selective A(3) antagonists so far described. The derivatives with higher affinity at human A(3) adenosine receptors proved to be antagonists, in the cAMP assay, capable of inhibiting the effect of IB-MECA with IC(50) values in the nanomolar range, with a trend strictly similar to that observed in the binding assay. Also a molecular modeling study was carried out, with the aim to identify possible pharmacophore maps. In fact, a sterically controlled structure-activity relationship was found for the N(8) pyrazole substituted derivatives, showing a correlation between the calculated molecular volume of pyrazolo[4,3-e]1,2, 4-triazolo[1,5-c]pyrimidine derivatives and their experimental K(i) values.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cricetinae
  • Cyclic AMP / biosynthesis
  • Humans
  • Models, Molecular
  • Molecular Structure
  • Purinergic P1 Receptor Antagonists*
  • Pyrazoles / chemistry*
  • Pyrimidines / chemical synthesis*
  • Pyrimidines / chemistry
  • Pyrimidines / pharmacology
  • Radioligand Assay
  • Receptor, Adenosine A3
  • Structure-Activity Relationship


  • Purinergic P1 Receptor Antagonists
  • Pyrazoles
  • Pyrimidines
  • Receptor, Adenosine A3
  • Cyclic AMP