Nonlinear dimensionality reduction by locally linear embedding
- PMID: 11125150
- DOI: 10.1126/science.290.5500.2323
Nonlinear dimensionality reduction by locally linear embedding
Abstract
Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.
Comment in
-
Cognition. The manifold ways of perception.Science. 2000 Dec 22;290(5500):2268-9. doi: 10.1126/science.290.5500.2268. Science. 2000. PMID: 11188725
Similar articles
-
A global geometric framework for nonlinear dimensionality reduction.Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319. Science. 2000. PMID: 11125149
-
Locally linear embedding for dimensionality reduction in QSAR.J Comput Aided Mol Des. 2004 Jul-Sep;18(7-9):475-82. doi: 10.1007/s10822-004-5319-9. J Comput Aided Mol Des. 2004. PMID: 15729847
-
A tractable latent variable model for nonlinear dimensionality reduction.Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15403-15408. doi: 10.1073/pnas.1916012117. Epub 2020 Jun 22. Proc Natl Acad Sci U S A. 2020. PMID: 32571935 Free PMC article.
-
A framework for optimal kernel-based manifold embedding of medical image data.Comput Med Imaging Graph. 2015 Apr;41:93-107. doi: 10.1016/j.compmedimag.2014.06.001. Epub 2014 Jun 9. Comput Med Imaging Graph. 2015. PMID: 25008538 Review.
-
Learning Markov Random Walks for robust subspace clustering and estimation.Neural Netw. 2014 Nov;59:1-15. doi: 10.1016/j.neunet.2014.06.005. Epub 2014 Jun 25. Neural Netw. 2014. PMID: 25005156 Review.
Cited by
-
Unsupervised learning predicts human perception and misperception of gloss.Nat Hum Behav. 2021 Oct;5(10):1402-1417. doi: 10.1038/s41562-021-01097-6. Epub 2021 May 6. Nat Hum Behav. 2021. PMID: 33958744 Free PMC article.
-
Discriminative Ridge Machine: A Classifier for High-Dimensional Data or Imbalanced Data.IEEE Trans Neural Netw Learn Syst. 2021 Jun;32(6):2595-2609. doi: 10.1109/TNNLS.2020.3006877. Epub 2021 Jun 2. IEEE Trans Neural Netw Learn Syst. 2021. PMID: 32692682 Free PMC article.
-
Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.PLoS One. 2012;7(8):e44530. doi: 10.1371/journal.pone.0044530. Epub 2012 Aug 30. PLoS One. 2012. PMID: 22952990 Free PMC article.
-
Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation.Med Phys. 2012 Apr;39(4):2275-89. doi: 10.1118/1.3682173. Med Phys. 2012. PMID: 22482648 Free PMC article.
-
Fast discriminative stochastic neighbor embedding analysis.Comput Math Methods Med. 2013;2013:106867. doi: 10.1155/2013/106867. Epub 2013 Jun 18. Comput Math Methods Med. 2013. PMID: 23853667 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
