Transfer of neuronal patterns from the CA3 to CA1 region was studied by simultaneous recording of neuronal ensembles in the behaving rat. A nonlinear interaction among pyramidal neurons was observed during sharp wave (SPW)-related population bursts, with stronger synchrony associated with more widespread spatial coherence. SPW bursts emerged in the CA3a-b subregions and spread to CA3c before invading the CA1 area. Synchronous discharge of >10% of the CA3 within a 100 ms window was required to exert a detectable influence on CA1 pyramidal cells. Activity of some CA3 pyramidal neurons differentially predicted the ripple-related discharge of circumscribed groups of CA1 pyramidal cells. We suggest that, in SPW behavioral state, the coherent discharge of a small group of CA3 cells is the primary cause of spiking activity in CA1 pyramidal neurons.