Interstitial cells of Cajal: primary targets of enteric motor innervation

Anat Rec. 2001 Jan 1;262(1):125-35. doi: 10.1002/1097-0185(20010101)262:1<125::AID-AR1017>3.0.CO;2-I.

Abstract

For many years morphologists have noted the close relationship between interstitial cells of Cajal (ICC) and nerve fibers within the tunica muscularis of gastrointestinal (GI) organs. These observations led to speculations about a role for ICC in mediating neural inputs to the GI tract. Immunohistochemical and functional studies demonstrated the presence of receptors for the neurotransmitters utilized by enteric motor neurons, and changes in second messengers in ICC after field stimulation of intrinsic enteric neurons showed that ICC were functionally innervated in GI muscles. Recent double labeling experiments have shown that both excitatory and inhibitory enteric motor neurons are closely associated with ICC in the deep muscular plexus (IC-DMP) of the small intestine and intramuscular ICC (IC-IM) of the proximal and distal GI tract. Enteric motor neurons form synaptic-like structures with IC-IM and IC-DMP. Far fewer close contacts are found between enteric motor neurons and smooth muscle cells. Experiments on W/W(V) mutants that lack IC-IM in the stomach, lower esophageal sphincter, and pylorus have shown that these ICC are critical components of the neuromuscular junction. Cholinergic excitatory and nitrergic inhibitory neurotransmission are severely decreased in tissues lacking IC-IM, yet there is no loss of cholinergic or nitrergic neurons in W/W(V) mutants. These data suggest that either the post-junctional mechanisms responsible for receiving and transducing neurotransmitter signals are specifically expressed by ICC, or that the large extracellular spaces typically between nerve terminals and smooth muscle cells may not allow effective concentrations of neurotransmitters to reach receptors expressed by smooth muscle cells. These findings indicate an important role for certain classes of ICC in enteric neurotransmission and predict that loss of ICC in human motor disturbances may significantly compromise neural regulation of GI motility.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Digestive System / cytology
  • Digestive System / innervation*
  • Electric Stimulation
  • Gastrointestinal Motility / physiology
  • Motor Neurons / chemistry
  • Motor Neurons / physiology*
  • Muscle, Smooth / innervation*
  • Muscle, Smooth / physiology
  • Myenteric Plexus / cytology*
  • Myenteric Plexus / physiology
  • Neuromuscular Junction / physiology
  • Synaptic Transmission / physiology