The phenylalanyl-tRNA synthetase (FRS) from Thermus thermophilus has previously been shown to bind DNA. We demonstrate that the "winged" helix-turn-helix motifs in the duplicate domains B5 are the relevant structural elements for this DNA-binding property. By altering particular amino acids in the "wing", the affinity of the FRS to DNA was significantly reduced. Based on experimental data, which indicate that the FRS prefers a certain DNA structure rather than a particular consensus sequence, we propose a novel loop model for the DNA-binding mode of the FRS. In our model we assume that two segments of the same DNA molecule are bound simultaneously by both B5 domains and are aligned in parallel, while the intervening DNA forms a loop. Due to the limited flexibility of the DNA, loop formation is only possible if the respective intervening DNA stretch exceeds a certain length. Several lines of evidence support this model. (1) We demonstrate by gel retardation assays that the DNA requires a minimal number of ca 80 base-pairs to be bound by the FRS. (2) In the presence of the FRS, DNA longer than ca 80 base-pairs has a significantly increased DNase I accessibility. This agrees well with its known preferential cleavage at positions where the minor grove is on the outside of looped-out DNA molecules. (3) The initial cleavage by DNase I of >80 bp long DNA occurs in the middle of the fragment. In a looped molecule this is the position with the highest accessibility to DNase I. The function of the FRS related to DNA binding is still unknown. Since the FRS exists in the nucleus of rapidly growing mammalian cells, and protein-induced DNA bending or looping contributes to several transcription, replication, and recombination systems in both prokaryotes and eukaryotes, it is likely that the FRS, in addition to its aminoacylation function, influences common cellular processes via DNA binding.
Copyright 2001 Academic Press.