CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum

J Neurophysiol. 2001 Jan;85(1):468-71. doi: 10.1152/jn.2001.85.1.468.


CB1 cannabinoid receptors in the neostriatum mediate profound motor deficits induced when cannabinoid drugs are administered to rodents. Because the CB1 receptor has been shown to inhibit neurotransmitter release in various brain areas, we investigated the effects of CB1 activation on glutamatergic synaptic transmission in the dorsolateral striatum of the rat where the CB1 receptor is highly expressed. We performed whole cell voltage-clamp experiments in striatal brain slices and applied the CB1 agonists HU-210 or WIN 55,212-2 during measurement of synaptic transmission. Excitatory postsynaptic currents (EPSCs), evoked by electrical stimulation of afferent fibers, were significantly reduced in a dose-dependent manner by CB1 agonist application. EPSC inhibition was accompanied by an increase in two separate indices of presynaptic release, the paired-pulse response ratio and the coefficient of variation, suggesting a decrease in neurotransmitter release. These effects were prevented by application of the CB1 antagonist SR141716A. When Sr(2+) was substituted for Ca(2+) in the extracellular solution, application of HU-210 (1 microM) significantly reduced the frequency, but not amplitude, of evoked, asynchronous quantal release events. Spontaneous release events were similarly decreased in frequency with no change in amplitude. These findings further support the interpretation that CB1 activation leads to a decrease of glutamate release from afferent terminals in the striatum. These results reveal a novel potential role for cannabinoids in regulating striatal function and thus basal ganglia output and may suggest CB1-targeted drugs as potential therapeutic agents in the treatment of Parkinson's disease and other basal ganglia disorders.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Benzoxazines
  • Calcium
  • Cannabinoids / pharmacology
  • Corpus Striatum / drug effects
  • Corpus Striatum / metabolism*
  • Dronabinol / analogs & derivatives*
  • Dronabinol / pharmacology
  • Electric Stimulation
  • Excitatory Amino Acid Antagonists / pharmacology
  • Excitatory Postsynaptic Potentials / drug effects
  • Excitatory Postsynaptic Potentials / physiology
  • Glutamic Acid / metabolism*
  • In Vitro Techniques
  • Morpholines / pharmacology
  • Naphthalenes / pharmacology
  • Patch-Clamp Techniques
  • Piperidines / pharmacology
  • Pyrazoles / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Cannabinoid
  • Receptors, Drug / agonists
  • Receptors, Drug / antagonists & inhibitors
  • Receptors, Drug / metabolism*
  • Rimonabant
  • Strontium / pharmacology
  • Synapses / drug effects
  • Synapses / metabolism*
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology


  • Benzoxazines
  • Cannabinoids
  • Excitatory Amino Acid Antagonists
  • Morpholines
  • Naphthalenes
  • Piperidines
  • Pyrazoles
  • Receptors, Cannabinoid
  • Receptors, Drug
  • Glutamic Acid
  • (3R)-((2,3-dihydro-5-methyl-3-((4-morpholinyl)methyl)pyrrolo-(1,2,3-de)-1,4-benzoxazin-6-yl)(1-naphthalenyl))methanone
  • Dronabinol
  • HU 211
  • Rimonabant
  • Calcium
  • Strontium