DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae

Mol Cell. 2000 Dec;6(6):1491-9. doi: 10.1016/s1097-2765(00)00145-3.


Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • DNA Damage / genetics*
  • DNA Repair / genetics
  • DNA Repair Enzymes
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism
  • DNA-Directed DNA Polymerase / chemistry
  • DNA-Directed DNA Polymerase / genetics
  • DNA-Directed DNA Polymerase / metabolism*
  • Endodeoxyribonucleases*
  • Endonucleases / genetics
  • Endonucleases / metabolism
  • Frameshift Mutation / genetics
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Gene Deletion
  • Genes, Fungal / genetics
  • Kinetics
  • Models, Genetic
  • Molecular Sequence Data
  • Mutagenesis / genetics*
  • Nucleotidyltransferases / genetics
  • Nucleotidyltransferases / metabolism
  • Rad52 DNA Repair and Recombination Protein
  • Recombination, Genetic / genetics
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae Proteins*


  • DNA-Binding Proteins
  • Fungal Proteins
  • RAD14 protein, S cerevisiae
  • RAD52 protein, S cerevisiae
  • Rad52 DNA Repair and Recombination Protein
  • Saccharomyces cerevisiae Proteins
  • RAD2 protein, S cerevisiae
  • Nucleotidyltransferases
  • DNA-Directed DNA Polymerase
  • Endodeoxyribonucleases
  • Endonucleases
  • RAD1 protein, S cerevisiae
  • DNA Repair Enzymes