Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 85 (1-3), 141-7

Role of Vagus Nerve Signaling in CNI-1493-mediated Suppression of Acute Inflammation


Role of Vagus Nerve Signaling in CNI-1493-mediated Suppression of Acute Inflammation

L V Borovikova et al. Auton Neurosci.


CNI-1493 is a potent anti-inflammatory agent, which deactivates macrophages and inhibits the synthesis of proinflammatory mediators. The objective of the present study was to identify the role of the central nervous system (CNS) and efferent vagus nerve signaling in CNI-1493-mediated modulation of acute inflammation in the periphery. CNI-1493 was administered either intracerebroventricularly (i.c.v., 0.1-1,000 ng/kg) or intravenously (i.v., 5 mg/kg) in anesthetized rats subjected to a standard model of acute inflammation (subcutaneous (s.c.) injection of carrageenan). I.c.v. CNI-1493 significantly suppressed carrageenan-induced paw edema, even in doses at least 6-logs lower than those required for a systemic effect. Bilateral cervical vagotomy or atropine blockade (1 mg/kg/h) abrogated the anti-inflammatory effects of CNI-1493 (1 microg/kg, i.c.v. or 5 mg/kg, i.v.), indicating that the intact vagus nerve is required for CNI-1493 activity. Recording of the efferent vagus nerve activity revealed an increase in discharge rate starting at 3-4 min after CNI-1493 administration (5 mg/kg, i.v.) and lasting for 10-14 min (control activity=87+/-5.4 impulses/s versus CNI-1493-induced activity= 229+/-6.7 impulses/s). Modulation of efferent vagus nerve activity by electrical stimulation (5 V, 2 ms, 1 Hz) of the transected peripheral vagus nerve for 20 min (10 min before carrageenan administration and 10 min after) also prevented the development of acute inflammation. Local administration of the vagus nerve neurotransmitter, acetylcholine (4 microg/kg, s.c.), or cholinergic agonists into the site of carrageenan-injection also inhibited acute inflammation. These results now identify a previously unrecognized role of efferent vagus nerve activity in mediating the central action of an anti-inflammatory agent.

Similar articles

See all similar articles

Cited by 80 PubMed Central articles

See all "Cited by" articles

MeSH terms

LinkOut - more resources