Cells and tissues can be protected against a potentially lethal stress by first exposing them to a brief dose of the same or different stress. This "pre-conditioning" phenomenon has been documented in many models of protection against oxidative stress, including ischemia/reperfusion and ultraviolet (UV) light exposure. Stimuli which induce this protective response include heat, chemicals, brief ischemia, and electromagnetic (EM) field exposures. We report here that constant mechanical vibration pre-conditions chick embryos, protecting them during subsequent stress from hypoxia or UV light exposure. Continuously mechanically vibrated embryos (60 Hz, 1 g (32 ft/s2), 20 min) exhibited nearly double the survival (67.5%, P < 0.001) after subsequent hypoxia as compared to non-vibrated controls (37.6%). As a second set of experiments, embryos were vibrated and then exposed to UV light stress. Those embryos that were vibrated prior to UV had nearly double the survival 3 h after UV exposure (66%, P < 0.001) as compared to controls (35%). The degree of protection, however, was dependent on the constancy of the vibration amplitude. When vibration was turned on and off at 1-s intervals throughout exposure, no increase in hypoxia protection was noted. For 50 s on/off vibration intervals, however, hypoxia protection comparable to continuous vibration was obtained. In contrast, random, inconstant mechanical vibration did not induce protection against subsequent UV exposure. These data suggest that to be an effective pre-conditioning agent, mechanical vibration must have a degree of temporally constancy (on/off intervals of greater than 1 s). Further experiments in both models (hypoxia and UV) indicated an interaction between vibration and EM field-induced protection. Vibration-induced hypoxia protection was inhibited by superposition of a random EM noise field (previously shown to inhibit EM field-induced protection). In addition, EM field-induced UV protection was inhibited by the superposition of random mechanical vibration. Thus, the superposition of either vibrational or EM noise during pre-conditioning virtually eliminated protection against hypoxia and UV. This link between EM field exposures and mechanical vibration is consistent with the hypothesis that cells sense these stimuli via a similar mechanism involving counter ion displacement.