Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking

Am J Physiol Regul Integr Comp Physiol. 2001 Feb;280(2):R598-601. doi: 10.1152/ajpregu.2001.280.2.R598.


Cholinergic neurons of the basal forebrain supply the neocortex with ACh and play a major role in regulating behavioral arousal and cortical electroencephalographic activation. Cortical ACh release is greatest during waking and rapid eye movement (REM) sleep and reduced during non-REM (NREM) sleep. Loss of basal forebrain cholinergic neurons contributes to sleep disruption and to the cognitive deficits of many neurological disorders. ACh release within the basal forebrain previously has not been quantified during sleep. This study used in vivo microdialysis to test the hypothesis that basal forebrain ACh release varies as a function of sleep and waking. Cats were trained to sleep in a head-stable position, and dialysis samples were collected during polygraphically defined states of waking, NREM sleep, and REM sleep. Results from 22 experiments in four animals demonstrated that means +/- SE ACh release (pmol/10 min) was greatest during REM sleep (0.77 +/- 0.07), intermediate during waking (0.58 +/- 0.03), and lowest during NREM sleep (0.34 +/- 0.01). The finding that, during REM sleep, basal forebrain ACh release is significantly elevated over waking levels suggests a differential role for basal forebrain ACh during REM sleep and waking.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylcholine / metabolism*
  • Animals
  • Cats
  • Cerebral Cortex / physiology
  • Electroencephalography
  • Male
  • Neurons / physiology*
  • Prosencephalon / physiology*
  • Sleep / physiology*
  • Sleep, REM / physiology*
  • Wakefulness / physiology*


  • Acetylcholine