Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes

Environ Microbiol. 2000 Dec;2(6):632-43. doi: 10.1046/j.1462-2920.2000.00146.x.

Abstract

A model rumen system, dual-flow continuous culture fermenters, was evaluated by two comparative criteria in two experiments using ribosomal (r)RNA-targeted DNA probes to compare key microbial groups in samples. The initial experiment measured temporal changes in population structure during adaptation of ruminal microbial populations in fermenters over 240 h. The fermenter inoculum contained 34.9% Bacteria, 60.1% Eukarya and 6.8% Archaea measured as a fraction of total small subunit (SSU) rRNA quantified using a universal probe. The cellulolytic bacterial genus Fibrobacter comprised 9.5% of total SSU rRNA in the inoculum. After 240 h of fermenter operation, the average abundance was 80.9% Bacteria, 6.1% Eukarya, 5.1% Archaea and Fibrobacter genus accounted for 6.6% of the total SSU rRNA. Divergence between ruminal and fermenter population structure was evaluated in the second experiment and samples were classified as ruminal, inoculum or fermenter (96, 120, 144 and 168 h of fermenter operation). Fermenter samples had higher relative abundances of Bacteria (84.5%) and Archaea (2.1%) and lower relative abundances of Eukarya (1.8%) than ruminal samples (average 48.0% Bacteria, 1.3% Archaea and 61.5% Eukarya). The relative abundance of Fibrobacter was similar in all samples, averaging 2.5%. The ruminal and fermenter samples had similar proportions of F. succinogenes and F. succinogenes subgroup 3 (as a percentage of Fibrobacter SSU rRNA). Fibrobacter succinogenes subgroup 1 and F. intestinalis proportions of Fibrobacter were lower in fermenter samples (8.2% and 0.7% respectively) than in ruminal samples (28.4% and 2.2% respectively). Fermenters were able to maintain a core prokaryotic community structure similar to the native microbial community in the rumen. Although protozoa populations were lost, maintenance of Fibrobacter and archaeal populations indicated that the model system supported a functional community structure similar to the rumen. This model rumen system may serve as a suitable tool for studying aspects of ruminal microbial ecology and may resolve some of the relationships between microbial community structure and function by providing control of experimental conditions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Archaea / classification
  • Archaea / growth & development*
  • Bioreactors
  • Cattle
  • Culture Media
  • Eubacterium / classification
  • Eubacterium / growth & development*
  • Female
  • RNA, Bacterial / analysis
  • RNA, Ribosomal, 16S / analysis*
  • Rumen / microbiology*

Substances

  • Culture Media
  • RNA, Bacterial
  • RNA, Ribosomal, 16S