What are the baselines for protein fold recognition?

Bioinformatics. 2001 Jan;17(1):63-72. doi: 10.1093/bioinformatics/17.1.63.


Motivation: What constitutes a baseline level of success for protein fold recognition methods? As fold recognition benchmarks are often presented without any thought to the results that might be expected from a purely random set of predictions, an analysis of fold recognition baselines is long overdue. Given varying amounts of basic information about a protein-ranging from the length of the sequence to a knowledge of its secondary structure-to what extent can the fold be determined by intelligent guesswork? Can simple methods that make use of secondary structure information assign folds more accurately than purely random methods and could these methods be used to construct viable hierarchical classifications? EXPERIMENTS PERFORMED: A number of rapid automatic methods which score similarities between protein domains were devised and tested. These methods ranged from those that incorporated no secondary structure information, such as measuring absolute differences in sequence lengths, to more complex alignments of secondary structure elements. Each method was assessed for accuracy by comparison with the Class Architecture Topology Homology (CATH) classification. Methods were rated against both a random baseline fold assignment method as a lower control and FSSP as an upper control. Similarity trees were constructed in order to evaluate the accuracy of optimum methods at producing a classification of structure.

Results: Using a rigorous comparison of methods with CATH, the random fold assignment method set a lower baseline of 11% true positives allowing for 3% false positives and FSSP set an upper benchmark of 47% true positives at 3% false positives. The optimum secondary structure alignment method used here achieved 27% true positives at 3% false positives. Using a less rigorous Critical Assessment of Structure Prediction (CASP)-like sensitivity measurement the random assignment achieved 6%, FSSP-59% and the optimum secondary structure alignment method-32%. Similarity trees produced by the optimum method illustrate that these methods cannot be used alone to produce a viable protein structural classification system.

Conclusions: Simple methods that use perfect secondary structure information to assign folds cannot produce an accurate protein taxonomy, however they do provide useful baselines for fold recognition. In terms of a typical CASP assessment our results suggest that approximately 6% of targets with folds in the databases could be assigned correctly by randomly guessing, and as many as 32% could be recognised by trivial secondary structure comparison methods, given knowledge of their correct secondary structures.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology*
  • Databases, Factual
  • Protein Folding*
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Reproducibility of Results
  • Sensitivity and Specificity