The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function

Bioessays. 2001 Mar;23(3):261-9. doi: 10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-K.


Neprilysin (NEP), a thermolysin-like zinc metalloendopeptidase, plays an important role in turning off peptide signalling events at the cell surface. It is involved in the metabolism of a number of regulatory peptides of the mammalian nervous, cardiovascular, inflammatory and immune systems. Examples include enkephalins, tachykinins, natriuretic and chemotactic peptides. NEP is an integral plasma membrane ectopeptidase of the M13 family of zinc peptidases. Other related mammalian NEP-like enzymes include the endothelin-converting enzymes (ECE-1 and ECE-2), KELL and PEX. A number of novel mammalian homologues of NEP have also recently been described. NEP family members are potential therapeutic targets, for example in cardiovascular and inflammatory disorders, and potent and selective inhibitors such as phosphoramidon have contributed to understanding enzyme function. Inhibitor design should be facilitated by the recent three-dimensional structural solution of the NEP-phosphoramidon complex. For several of the family members, however, a well-defined physiological function or substrate is lacking. Knowledge of the complete genomes of Caenorhabditis elegans and Drosophila melanogaster allows the full complement of NEP-like activities to be analysed in a single organism. These model organisms also provide convenient systems for examining cell-specific expression, developmental and functional roles of this peptidase family, and reveal the power of functional genomics.

Publication types

  • Review

MeSH terms

  • Animals
  • Cluster Analysis
  • Drug Design
  • Humans
  • Mammals
  • Metalloendopeptidases / genetics*
  • Metalloendopeptidases / metabolism*
  • Neprilysin / genetics*
  • Neprilysin / metabolism*
  • Phylogeny
  • Protease Inhibitors / pharmacology
  • Protease Inhibitors / therapeutic use
  • Signal Transduction
  • Synapses / physiology
  • Zinc / metabolism


  • Protease Inhibitors
  • Metalloendopeptidases
  • Neprilysin
  • Zinc