Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Feb 1;49(3):233-9.
doi: 10.1016/s0006-3223(00)01100-8.

Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity

Affiliations
Review

Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity

S Shimohama et al. Biol Psychiatry. .

Abstract

Multiple lines of evidence, from molecular and cellular to epidemiologic, have implicated nicotinic transmission in the pathology of Alzheimer's disease. In this review we present evidence for nicotinic receptor-mediated protection against beta-amyloid and glutamate neurotoxicity, and the signal transduction involved in this mechanism. The data are based mainly on our studies using rat-cultured primary neurons. Nicotine-induced protection was blocked by an alpha7 nicotinic receptor antagonist, a phosphatidylinositol 3-kinase inhibitor, and an Src inhibitor. Levels of phosphorylated Akt, an effector of phosphatidylinositol 3-kinase; Bcl-2; and Bcl-x were increased by nicotine administration. From these experimental data, our hypothesis for the mechanism of nicotinic receptor-mediated survival signal transduction is that the alpha7 nicotinic receptor stimulates the Src family, which activates phosphatidylinositol 3-kinase to phosphorylate Akt, which subsequently transmits the signal to upregulate Bcl-2 and Bcl-x. Upregulation of Bcl-2 and Bcl-x could prevent cells from neuronal death induced by beta-amyloid and glutamate. These findings suggest that an early diagnosis of Alzheimer's disease and protective therapy with nicotinic receptor stimulation could delay the progress of Alzheimer's disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources