Connexin 45 is a gap junction protein that is prominent in early embryos and is widely expressed in many mature cell types. To elucidate its gene structure, expression, and regulation, we isolated mouse Cx45 genomic clones. Alignment of the genomic DNA and cDNA sequences revealed the presence of three exons and two introns. The first two exons contained only 5' untranslated sequences, while exon 3 contained the remaining 5' UTR, the entire coding region, and the 3' UTR. An RT-PCR with exon-specific primers was utilized to examine exon usage in F9 mouse embryonal carcinoma cells and adult mouse tissues. In all samples, PCR products amplified using exon 2/exon 3 or exon 3/exon 3 primer pairs were much more abundant than products produced using exon 1/exon 2 or exon 1/exon 3 primer pairs, suggesting that Cx45 mRNAs containing exon 1 were relatively rare compared with mRNAs containing the other exons. Rapid amplification of cDNA ends (5'-RACE) was performed using antisense primers from within exon 3 and template RNA prepared from F9 cells or from adult mouse kidney. We obtained multiple RACE products from both templates, including products that contained all three exons and were spliced identically to the cDNA. However, clones were also isolated (from kidney) that began within the region previously identified as intron 1 and continued upstream with a sequence identical to the cDNA, including splicing to exon 3. These results show that mouse Cx45 has a gene structure that differs from that of previously studied connexins and allows the production of heterogeneous Cx45 mRNAs with differing 5' UTRs. These differences might contribute to regulation of Cx45 protein levels by modulating mRNA stability or translational efficiency.