Initial patterning of the central nervous system: how many organizers?

Nat Rev Neurosci. 2001 Feb;2(2):92-8. doi: 10.1038/35053563.


For three-quarters of a century, developmental biologists have been asking how the nervous system is specified as distinct from the rest of the ectoderm during early development, and how it becomes subdivided initially into distinct regions such as forebrain, midbrain, hindbrain and spinal cord. The two events of 'neural induction' and 'early neural patterning' seem to be intertwined, and many models have been put forward to explain how these processes work at a molecular level. Here I consider early neural patterning and discuss the evidence for and against the two most popular models proposed for its explanation: the idea that multiple signalling centres (organizers) are responsible for inducing different regions of the nervous system, and a model first articulated by Nieuwkoop that invokes two steps (activation/transformation) necessary for neural patterning. As recent evidence from several systems challenges both models, I propose a modification of Nieuwkoop's model that most easily accommodates both classical and more recent data, and end by outlining some possible directions for future research.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Central Nervous System / embryology*
  • Embryonic Induction / physiology*
  • Embryonic and Fetal Development / physiology*
  • Humans
  • Organizers, Embryonic / physiology*