A genetic interpretation of ecologically dependent isolation

Evolution. 2001 Jan;55(1):198-201. doi: 10.1111/j.0014-3820.2001.tb01284.x.


Hybrids may suffer a reduced fitness both because they fall between ecological niches (ecologically dependent isolation) and as a result of intrinsic genetic incompatibilities between the parental genomes (ecologically independent isolation). Whereas genetic incompatibilities are common to all theories of speciation, ecologically dependent isolation is a unique prediction of the ecological model of speciation. This prediction can be tested using reciprocal transplants in which the fitness of various genotypes is evaluated in both parental habitats. Here we expand a quantitative genetic model of Lynch (1991) to include two parental environments. We ask whether a sufficient experimental design exists for detecting ecologically dependent isolation. Analysis of the model reveals that by using both backcrosses in both parental environments, environment-specific additive genetic effects can be estimated while correcting for any intrinsic genetic isolation. Environment-specific dominance effects can also be estimated by including the F1 and F2 in the reciprocal transplant. In contrast, a reciprocal transplant comparing only F1s or F2s to the parental species cannot separate ecologically dependent from intrinsic genetic isolation. Thus, a reduced fitness of F1 or F2 hybrids relative to the parental species is not sufficient to demonstrate ecological speciation. The model highlights the importance of determining the contribution of genetic and ecological mechanisms to hybrid fitness if inferences concerning speciation mechanisms are to be made.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Animals
  • Biological Evolution*
  • Environment
  • Hybridization, Genetic*
  • Models, Theoretical
  • Selection, Genetic*