Involvement of H-NS in transpositional recombination mediated by IS1

J Bacteriol. 2001 Apr;183(8):2476-84. doi: 10.1128/JB.183.8.2476-2484.2001.


IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins*
  • DNA Transposable Elements / genetics*
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Escherichia coli / genetics*
  • Escherichia coli / growth & development
  • Mutation
  • Plasmids / genetics
  • Recombination, Genetic*
  • SOS Response, Genetics
  • Transformation, Genetic
  • Transposases / genetics
  • Transposases / metabolism*


  • Bacterial Proteins
  • DNA Transposable Elements
  • DNA-Binding Proteins
  • H-NS protein, bacteria
  • Transposases