Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition

J Biol Chem. 2001 May 25;276(21):18579-90. doi: 10.1074/jbc.M100846200. Epub 2001 Feb 21.

Abstract

The IkappaB kinase (IKK) signaling complex is responsible for activating NF-kappaB-dependent gene expression programs. Even though NF-kappaB-responsive genes are known to orchestrate stress-like responses, critical gaps in our knowledge remain about the global effects of NF-kappaB activation on cellular physiology. DNA microarrays were used to compare gene expression programs in a model system of 70Z/3 murine pre-B cells versus their IKK signaling-defective 1.3E2 variant with lipopolysaccharide (LPS), interleukin-1 (IL-1), or a combination of LPS + phorbol 12-myristate 13-acetate under brief (2 h) or long term (12 h) stimulation. 70Z/3-1.3E2 cells lack expression of NEMO/IKKgamma/IKKAP-1/FIP-3, an essential positive effector of the IKK complex. Some stimulated hits were known NF-kappaB target genes, but remarkably, the vast majority of the up-modulated genes and an unexpected class of repressed genes were all novel targets of this signaling pathway, encoding transcription factors, receptors, extracellular ligands, and intracellular signaling factors. Thirteen stimulated (B-ATF, Pim-2, MyD118, Pea-15/MAT1, CD82, CD40L, Wnt10a, Notch 1, R-ras, Rgs-16, PAC-1, ISG15, and CD36) and five repressed (CCR2, VpreB, lambda5, SLPI, and CMAP/Cystatin7) genes, respectively, were bona fide NF-kappaB targets by virtue of their response to a transdominant IkappaBalphaSR (super repressor). MyD118 and ISG15, although directly induced by LPS stimulation, were unaffected by IL-1, revealing the existence of direct NF-kappaB target genes, which are not co-induced by the LPS and IL-1 Toll-like receptors.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • B-Lymphocytes / cytology
  • B-Lymphocytes / physiology*
  • Cell Differentiation / physiology
  • Cell Line
  • Gene Expression Regulation / physiology
  • Mitogen-Activated Protein Kinases / physiology*
  • NF-kappa B / physiology*
  • Signal Transduction / physiology

Substances

  • NF-kappa B
  • Mitogen-Activated Protein Kinases