Commissural effects in the otolith system

Exp Brain Res. 2001 Feb;136(4):421-30. doi: 10.1007/s002210000611.

Abstract

We examined whether otolith-activated second- and third-order vestibular nucleus neurons received commissural inhibition from the contralateral otolithic macula oriented in the same geometric plane. For this purpose we performed intracellular recording in vestibular nucleus neurons after stimulation of the ipsi- and contralateral utricular and saccular nerves. More than half (41/72) of the utricular-activated second-order vestibular nucleus neurons received commissural inhibition from the contralateral utricular nerve. The remaining neurons (31/72) showed no visible response to contralateral utricular nerve stimulation. About half (17/36) of utricular-activated third-order neurons also received commissural inhibition from the contralateral utricular nerve. Approximately 10% (7/67) of saccular-activated second-order vestibular neurons received polysynaptic commissural inhibition, whereas 16% (11/67) received commissural facilitation. The majority (49/67) of saccular second-order vestibular neurons, and almost all (22/23) third-order neurons, showed no visible response to stimulation of the contralateral saccular nerve. The present findings suggest that many utricular-activated vestibular nucleus neurons receive commissural inhibition, which may provide a mechanism for increasing the sensitivity of vestibular neurons to horizontal linear acceleration and lateral tilt of the head. Commissural inhibition in the saccular system was less prominent than in the utricular system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cats
  • Electrophysiology
  • Neurons / physiology*
  • Otolithic Membrane / physiology*
  • Reaction Time / physiology
  • Vestibular Nuclei / cytology
  • Vestibular Nuclei / physiology*