Ion permeation and selectivity in ClC-type chloride channels

Am J Physiol Renal Physiol. 2001 May;280(5):F748-57. doi: 10.1152/ajprenal.2001.280.5.F748.


Voltage-gated anion channels are present in almost every living cell and have many physiological functions. Recently, a novel gene family encoding voltage-gated chloride channels, the ClC family, was identified. The knowledge of primary amino acid sequences has allowed for the study of these anion channels in heterologous expression systems and made possible the combination of site-directed mutagenesis and high-resolution electrophysiological measurements as a means of gaining insights into the molecular basis of channel function. This review focuses on one particular aspect of chloride channel function, the selective transport of anions through biological membranes. I will describe recent experiments using a combination of cellular electrophysiology, molecular genetics, and recombinant DNA technology to study the molecular basis of ion permeation and selection in ClC-type chloride channels. These novel tools have provided new insights into basic mechanisms underlying the function of these biologically important channels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Chloride Channels / chemistry
  • Chloride Channels / metabolism*
  • Chlorides / metabolism*
  • Humans


  • Chloride Channels
  • Chlorides