Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 109 (1-2), 105-11

Common Mechanisms of Y Chromosome Evolution

Affiliations
Review

Common Mechanisms of Y Chromosome Evolution

M Steinemann et al. Genetica.

Abstract

Y chromosome evolution is characterized by the expansion of genetic inertness along the Y chromosome and changes in the chromosome structure, especially the tendency of becoming heterochromatic. It is generally assumed that the sex chromosome pair has developed from a pair of homologues. In an evolutionary process the proto-Y-chromosome, with a very short differential segment, develops in its final stage into a completely heterochromatic and to a great extends genetically eroded Y chromosome. The constraints evolving the Y chromosome have been the objects of speculation since the discovery of sex chromosomes. Several models have been suggested. We use the exceptional situation of the neo-Y in Drosophila miranda to analyze the molecular process in progress involved in Y chromosome evolution. We suggest that the first steps in the switch from a euchromatic proto-Y-chromosome into a completely heterochromatic Y chromosome are driven by the accumulation of transposable elements, especially retrotransposons inserted along the evolving nonrecombining part of the Y chromosome. In this evolutionary process trapping and accumulation of retrotransposons on the proto-Y-chromosome should lead to conformational changes that are responsible for successive silencing of euchromatic genes, both intact or already mutated ones and eventually transform functionally euchromatic domains into genetically inert heterochromatin. Accumulation of further mutations, deletions, and duplications followed by the evolution and expansion of tandem repetitive sequence motifs of high copy number (satellite sequences) together with a few vital genes for male fertility will then represent the final state of the degenerated Y chromosome.

Similar articles

See all similar articles

Cited by 14 PubMed Central articles

See all "Cited by" articles

LinkOut - more resources

Feedback