Background: Crack cocaine dependence and addiction is typically associated with frequent and intense drug wanting or craving triggered by internal or environmental cues associated with past drug use.
Methods: Water O 15 positron emission tomography (PET) studies were used to localize alterations in synaptic activity related to cue-induced drug craving in 8 crack cocaine-dependent African American men. In a novel approach, script-guided imagery of autobiographical memories were used as individualized cues to internally generate a cocaine craving state and 2 control (ie, anger and neutral episodic memory recall) states during PET image acquisition.
Results: The mental imagery of personalized drug use and anger-related scripts was associated with self-ratings of robust drug craving or anger, and comparable alterations in heart rate. Compared with the neutral imagery control condition, imagery-induced drug craving was associated with bilateral (right hemisphere amygdala activation greater than left) activation of the amygdala, the left insula and anterior cingulate gyrus, and the right subcallosal gyrus and nucleus accumbens area. Compared with the anger control condition, internally generated drug craving was associated with bilateral activation of the insula and subcallosal cortex, left hippocampus, and anterior cingulate cortex and brainstem. A brain-wide pixel-by-pixel search indicated significant positive and negative correlations between imagery-induced cocaine craving and regional cerebral blood flow (rCBF) in distributed sites.
Conclusions: The collected findings suggest the craving-related activation of a network of limbic, paralimbic, and striatal brain regions, including structures involved in stimulus-reward association (amygdala), incentive motivation (subcallosal gyrus/nucleus accumbens), and anticipation (anterior cingulate cortex).