Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus
- PMID: 11296216
- PMCID: PMC125418
- DOI: 10.1093/emboj/20.8.1819
Structural and functional studies of MinD ATPase: implications for the molecular recognition of the bacterial cell division apparatus
Abstract
Proper placement of the bacterial cell division site requires the site-specific inactivation of other potential division sites. In Escherichia coli, selection of the correct mid-cell site is mediated by the MinC, MinD and MinE proteins. To clarify the functional role of the bacterial cell division inhibitor MinD, which is a membrane-associated ATPase that works as an activator of MinC, we determined the crystal structure of a Pyrococcus furiosus MinD homologue complexed with a substrate analogue, AMPPCP, and with the product ADP at resolutions of 2.7 and 2.0 A, respectively. The structure reveals general similarities to the nitrogenase iron protein, the H-Ras p21 and the RecA-like ATPase domain. Alanine scanning mutational analyses of E.coli MinD were also performed in vivo. The results suggest that the residues around the ATP-binding site are required for the direct interaction with MinC, and that ATP binding and hydrolysis play a role as a molecular switch to control the mechanisms of MinCDE-dependent bacterial cell division.
Figures
Similar articles
-
The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP.Structure. 2001 Sep;9(9):817-26. doi: 10.1016/s0969-2126(01)00638-4. Structure. 2001. PMID: 11566131
-
Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection.Mol Microbiol. 2004 Oct;54(1):99-108. doi: 10.1111/j.1365-2958.2004.04265.x. Mol Microbiol. 2004. PMID: 15458408
-
Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD ATPase and residues required for MinC interaction.J Bacteriol. 2005 Jan;187(2):629-38. doi: 10.1128/JB.187.2.629-638.2005. J Bacteriol. 2005. PMID: 15629934 Free PMC article.
-
The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.FEBS Lett. 2015 Jan 16;589(2):201-6. doi: 10.1016/j.febslet.2014.11.047. Epub 2014 Dec 10. FEBS Lett. 2015. PMID: 25497011
-
The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site.EMBO J. 1991 Dec;10(13):4371-80. doi: 10.1002/j.1460-2075.1991.tb05015.x. EMBO J. 1991. PMID: 1836760 Free PMC article.
Cited by
-
Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15693-8. doi: 10.1073/pnas.232590599. Epub 2002 Nov 7. Proc Natl Acad Sci U S A. 2002. PMID: 12424340 Free PMC article.
-
Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins.J Bacteriol. 2009 Mar;191(5):1490-7. doi: 10.1128/JB.01469-08. Epub 2008 Dec 29. J Bacteriol. 2009. PMID: 19114487 Free PMC article.
-
The E. coli MinCDE system in the regulation of protein patterns and gradients.Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17. Cell Mol Life Sci. 2019. PMID: 31317204 Free PMC article. Review.
-
Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis.EMBO J. 2001 Sep 3;20(17):4901-11. doi: 10.1093/emboj/20.17.4901. EMBO J. 2001. PMID: 11532954 Free PMC article.
-
Conserved glycines in the C terminus of MinC proteins are implicated in their functionality as cell division inhibitors.J Bacteriol. 2004 May;186(9):2841-55. doi: 10.1128/JB.186.9.2841-2855.2004. J Bacteriol. 2004. PMID: 15090526 Free PMC article.
References
-
- Abrahams J.P. and Leslie,A.G.W. (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D, 52, 31–42. - PubMed
-
- Abrahams J.P., Leslie,A.G.W., Lutter,L.R. and Walker,J.E. (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature, 370, 621–628. - PubMed
-
- Ban C., Junop,M. and Yang,W. (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell, 97, 85–97. - PubMed
-
- Benz J., Trachsel,H. and Baumann,U. (1999) Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae—the prototype of the DEAD box protein family. Struct. Fold. Des., 7, 671–679. - PubMed
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
